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Abstract .  Two-dimensional free surface flows generated by a moving distribution of pressure are considered. The 
bottom is assumed to be covered by a thin layer of mud. The mud is modelled as a viscous fluid. The problem is 
solved numerically by a boundary integral equation method. It is shown that the layer of mud produces a damping 
of the waves in the far field. Profiles of the free surface and of the surface of the mud are presented. 

1. Introduction 

The problem of the generation of waves by a moving distribution of pressure has been 
considered by many investigators (see for example Lamb [1], Schwartz [2] and Vanden- 
Broeck and Dias [3]). In these calculations it is assumed that the fluid is of infinite depth or 
bounded below by a rigid horizontal bottom. 

In this paper we look at the effect of replacing the rigid horizontal bottom by a thin layer 
of mud. This problem is motivated by the observation that a layer of mud can have drastic 
effects on wave damping and on the motion and wave resistance of a ship [4-7]. 

Our configuration consists of two superposed layers of fluid in a channel. The lower 
layer represents the mud which is modelled as a viscous fluid. The upper layer is inviscid 
and bounded above by a free surface. The pressure distribution is assumed to move at a 
constant velocity on the free surface. We approximate the flow in the lower layer by using 
the lubrication equations. This enables us to formulate the problem as an inviscid flow with 
appropriate boundary conditions. The lubrication equations were used recently by King, Tuck 
and Vanden-Broeck [8] to study waves on a thin layer of fluid. The inviscid problem is then 
reformulated as a boundary integral equation. This equation is discretized and the resultant 
algebraic equations are solved by Newton's method. The numerical procedure is similar to the 
one used by many investigators to study purely inviscid free surface flows (see, for example, 
Vanden-Broeck and Tuck [9], Schwartz [2], Forbes [10] and Vanden-Broeck and Dias [3]). 
The idea of reducing a problem with a thin viscous layer to an inviscid one with appropriate 
boundary conditions was used before by Kit and Shemer [11]. 

Our results show that the layer of mud produces a damping of the waves. Since the waves 
are ultimately of small amplitude in the far field, the rate of damping can be evaluated by using 
a linear theory. It is found that the rate of damping approaches zero for very small or very 
large values of the Reynolds number. Values of the wave resistance are also presented. 

The problem is formulated in Section 2. The integral equation is derived in Section 3. The 
numerical procedure is described in Section 4 and the results are presented in Section 5. 
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Fig. 1. Sketch of the flow and of the coordinates. 

2. Mathematical formulation 

We consider a channel with two superposed layers of fluids. The flow is bounded below 
by a horizontal bottom and above by a free surface (see Figure 1). The lower layer is an 
incompressible and viscous fluid of density Pl, and viscosity u. The upper layer is an incom- 
pressible and inviscid fluid of density P2. We are interested in the train of waves generated by 
a prescribed distribution of pressure moving at a constant velocity c on the free surface. We 
take a frame of reference moving with the pressure distribution so that the flow is steady. Far 
upstream the lower and upper layers are characterized by constant thickness hl and h2 and a 
constant velocity c. We introduce Cartesian coordinates with the x-axis along the level of the 
free surface far upstream and the y-axis directed vertically upwards. Gravity is acting along 
the negative y-axis. We describe the shape of the free surface by y = tiE(X) and the shape of 
the interface between the two layers by g = ~Tz (x). The functions r/F (x) and 771(x) have to be 
found as part of the solution. 

We first approximate the flow in - h i  - h2 < y < rlz(x) by assuming that the lower layer 
is thin. If L denotes a length scale for changes in the x-direction, prescribed for example by 
the wavelength of the oscillations on the interface y = r/z(x), we define 

e = h i l L  (2.1) 

and assume e << 1. This is the situation that applies in lubrication theory [12] and allows 
asymptotic simplification of the Navier-Stokes equations as e ---+ 0. In order that gravity and 
the pressure exerted by the upper layer on g = r/x(x) have an effect, we must demand that the 
fluid pressure p has the lubrication pressure scale 

p = O(pucL - le -2) .  (2.2) 

We must also demand that the Reynolds number 

RL = cL/u (2.3) 

be not too large; specifically that 

RL << £-2.  (2.4) 
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The Navier-Stokes equations then simplify to 

uz  "4- vv = 0 

1 
0 = Px  + uuvy  (2.5) 

Pl 

1 

0 = p l p v  - g. 

Here u and v are the x and y components of the velocity. 
In the upper layer the flow is irrotational. Therefore the complex velocity u - c - iv  is an 

analytic function of z = x + iy  in the strip r/z(x) < y < ~?F(X). 
The equations are to be solved subject to the boundary conditions 

(i) u = c, v = O on y = - h l  - h2, 
(ii) u y = O  on y=r /~- (x ) ,  

(iii) p ( x ,  7-~(x))  = p ( x ,  7 + ( x ) ) ,  
(iv) v = u T i ~  on Y=Tz±'(x), 
(V)  V = U?~F~ on y = ~?F(X), 

(vi) (u2 + v2) + g7F(X)  + P A ( X )  c 2 
- -  - -  o n  y = 7F(X) 

2 P2 2 
(vii) u ---~ c, v - .  O as x - - - ~ - ~  
Here 77 and 7 + denote the lower and upper sides of the interface 7I. The conditions (ii), 
(iii), (iv) on the interface y = r/i(x) represent, respectively, continuity of tangential stress, 
continuity of the pressure and the kinematic conditions. In condition (iii) we have neglected the 
normal viscous stress. This is consistent with the lubrication approximation. The conditions 
(v) and (vi) on the free surface y = 7F(X)  are the kinematic condition and the dynamic 
boundary condition. The function PA (x )  in (vi) is the prescribed distribution of pressure. We 
assume that PA (x)  has compact support, i.e. that PA (x )  vanishes outside some finite interval. 
The condition (vii) is the radiation condition which prohibits waves far upstream. It is the 
same condition as used in inviscid theory. 

This concludes the formulation of the problem. We seek the functions u ( x ,  y) ,  v ( x ,  y) ,  
p ( x ,  y) ,  I]F(X ) and 7 i ( x )  satisfying (2.5) in - h i  - h2 < y < 7i(x),  the boundary conditions 
(i)-(vii) and such that u - iv  is an analytic function of z = x + iy  in r l i (x)  < y < ~ F ( x ) .  

3 .  R e f o r m u l a t i o n  a s  a n  i n t e g r o - d i f f e r e n t i a l  e q u a t i o n  

We introduce dimensional variables by choosing c as the reference velocity and h2 as the 
reference length. In the remaining part of the paper all the variables are assumed to be 
dimensionless. As we shall see, the problem is then characterized by the Froude number 

F = c / ( g h 2 )  1/2, (3.1) 

the Reynolds number 

R = c h 2 / v ,  (3.2) 

the depth ratio 

/3 = h l / h z ,  (3.3) 



390 J.-M. Vanden-Broeck and T. Miloh 

and the density ratio 

6 = Pl/P2 > 1. (3.4) 

The quantity w(z)  = u - iv - 1 is an analytic function of x + iy in rlz(x) < y < rIF(X). 
Hence by Cauchy's theorem, when z is on the free surface 

1 ~ w(~) d~ 
W(Z) = - _  ( 3 . 5 )  

71"~ YC ~ -- g 

with a Cauchy principal-value interpretation. Here C denotes the free surface and the interface 
between the two layers. 

We denote the values of u and v on the free surface and on the upper and lower sides of 
the interface by UF(X), VF(X), U+ (X), V+ (X), UI (X ) and v i  (x),  respectively. Taking the real 
part of (3.5), we obtain, after some algebra 

7r[up(x) - I] 

= _ i  +~ [UF(S) -- 1 + VF(S)B'F(a)][OF(X) -- 0F(S)] + [(UF(S) -- 1)0~,(8) -- VF(S)](S -- X)d s 
, ] - - 0 0  (~ _ x)2 + (oF( s )  - o F ( x ) ) :  

+ i  +°~ [u+(s ) -  1 + v+(s)O}(s)][OF(x) -7I(8)]  + [(u/+(s)- 1)0}(s)-  v+(s)](s - X ) d s  
(~ - x ) :  + (m(~)  - o r ( x ) ) :  

(3.6) 

7r[u + (x) - 11 

= - L L  ~ [ - F ( ~ )  - 

1 + VV(s)O~F(S)][OS(X) -- 0F(S)] + [(UF(S) -- 1)0~(S) -- VF(S)I(s -- X)d s 

+ f / 5  ,u+, - 

(8 --  X) 2 -'~ (OF(8) -- 0I(X))  2 

1 + V+(S)O}(S)I[oz(X) -- 0z(S)] + [(U+(S) -- 1)0}(S) -- V+(S)](S -- X) 
ds. 

(8 - -X)2+(OI(8)  -- 0I(X)) 2 

(3.7) 

The equations (2.5) with the boundary conditions (i), (ii), (iv) and (vii) are easily integrated 
and the resulting single equation put in the form (see Appendix) 

d p -  r/i(x ) 3 nI(X) + 1 
d---ff + F 2 = R (rII(X) +/~ -t- 1) 3. (3.8) 

Here we use the notation p - ( x )  = p(x ,  r l i ( x ) )  and p+(x)  = p(x ,  rl+(x)). Using Bernoulli's 
equation on the upper side of the interface, we obtain 

u 2 + v  2 n z ( x )  
p+(x)  = 1 2 F 2 

Substituting (iii) and (3.9) into (3.8), yields 

F2 3 n s ( x )  + 1 
6__lr l}(x)  + R(r l s ( x )  + fl + l) 3 

Finally, (iv) gives 

V?(X)  = UI(X)~tI(X). 

+ ~ ( u u x  + vvx )  = O. 

(3.9) 

(3.10) 

(3.11) 
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For given values of F,  R,/3 and 5, relations (vi), (3.6), (3.7), (3.10) and (3.11) define a 
system of integro-differential equations for the four unknown functions UF (x), ~F (x), u + (x) 
and ~ ( x ) .  This system is solved numerically in the next section. In all the calculations we 
chose 

PA(X) = O, for Ixl > b (3.12) 

and 

PA(X) = eexp x2--  b2 for Jxl < b. (3.13) 

Here e and b are two constants which define the strength and the length of the pressure 
distribution. 

After a solution has been computed the wave resistance or drag D can be evaluated by the 
integral 

/7 D = PA(X)~IIF(X) dx. (3.14) 

4. Numerical procedure 

We seek a numerical solution of the nonlinear integro-differential system (vi), (3.6), (3.7), 
(3.10) and (3.11). We define N + 1 mesh points on the free surface y = ~F(X) and N + 1 
mesh points on the upper side of the interface y = ~+(x) by specifying values x = X K ,  
where 

E N  
X K  = - - - +  E ( K - 1 ) ,  K = I , . . . , N  + I. (4.1) 

2 

here E is the interval of discretization. We shall also make use of the intermediate mesh points 
X K + l / 2  ---- (XK+I -~- X K ) / 2 ,  K = 1 , 2 , . . . ,  N.  

We now define the 4N + 4 corresponding fundamental unknown quantities 

UFK = U F ( X K ) ,  K = 1 , 2 , . . . , N + 1  (4.2) 

! 
~?FK = 7?~F(XK), K ---- 1 , 2 , . . . ,  N + 1 (4.3) 

UZK = U+z (XK),  K = I , 2 , . . . , N  + I (4.4) 

and 

! 
g]I K = ?']tI(XK) , K = 1 , 2 , . . . ,  N + 1. (4.5) 

We directly obtain the values of UFK -~ V F ( X K )  and of vIK = v+(XK)  in terms of 
the unknowns by using (v) and (3.11). We estimate the values of ~FK = ~E(XK)  and 
~Ig = 771(XK) in terms of the fundamental unknowns by the trapezoidal rule with ~F (1) = 0 
and ~/z(1) = - 1 .  

We then evaluate the values Of UF(X), VF(X), uz(x),  vi(x) ,  alE(X), V~F (X), U~I(X) and v~i(x) 
in terms of the unknowns by four-point difference formulas. We satisfy (vi) and (3.10) at the 
intermediate mesh points. This yields 2N  nonlinear equations. 
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Fig. 2. Free surface profiles for F = 0.72, b = 0.5, 6 = 1,/3 = 0.25, e = 0.5 and R = 9 ( 
R = 6 0 (  . . . .  ) , R =  co( . . . . . .  ). 

) , R =  15 ( - - - ) ,  

Next  we satisfy (3.6) and (3.7) at the point x = XK+I/2 ,  K : 1 , 2 , . . . ,  N by applying the 
trapezoidal rule to (3.6) and (3.7), with a sum over the points x = X j ,  J = 1 , 2 , . . . ,  N + 1. 
The symmetry of  the discretization and of  the trapezoidal rule with respect to the singularity of  
the integrand at s = x enables us to evaluate this Cauchy principal value integral by ignoring 
the singularity, with an accuracy no less than a nonsingular integral. This yields 2 N  extra 
nonlinear equations. 

Four more equations are obtained by imposing the far field conditions 

r/~- 1 = 0 (4.6) 

! 
r/F1 = 0 ( 4 . 7 )  

UFa = 1 (4 .8 )  

uI~ = 1. (4.9) 

We n ow  have 4 N  + 4 equations for the 4 N  + 4 unknowns (4 .2)- (4 .5) .  This system is solved 
by Newton's  method for given values of  F ,  R, 6,/3, e and b. 

5. D i scuss ion  o f  results  

We used the numerical scheme of  Section 4 to compute solutions for 6 = 1 and various values 
of  F , /3 ,  R,  e and b. Solutions for different values of  F , / 3  and b were found to be qualitatively 
similar. Therefore we assume in the remaining part of  the paper that b = 0 .5 , /3  = 0.25 and 
F = 0 . 7 2 .  
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Typical profiles of  the free surface and of  the surface of  the surface of  the mud are shown 
in Figures 2 and 3 for e = 0.5 and various values of  R. As R -+ 0, the surface of  the mud 
becomes increasingly flat and the waves on the free surface approach a train of  waves of  
constant amplitude as x --+ exp. For 0 < R ~< oo, there are waves on both the free surface and 
the surface of  the mud. For 0 < R < oe, the amplitude of the waves on the free surface and 
on the surface of  the mud decays to zero as x --* oo. For R = oc, the waves approach again 
a train of  waves of  constant amplitude as x --~ oe. The problem with R = oo is completely 
inviscid and describes waves in a two fluid system when the pressure in the lower layer is 
assumed to be hydrostatic (see (3.8) with R = oo). Similar two-fluid systems were considered 
before by Olmstead and Raynor  [13], Tuck [14] and Vanden-Broeck [15]. 

For 0 < R < c~, the waves are ultimately of  small amplitude as x --~ oo. Therefore we can 
evaluate the rate of  decay in the far field by using linear theory. For this purpose we write 

u = l + u *  (5.1) 

v = v* (5.2) 

~ F  ~-  ~ F  ( 5 , 3 )  

r/i = fl + r/~ (5.4) 

where the variables with * denote small perturbations. 
Substituting (5.1)-(5.4) into (3.10), (3.11) and (vi) and retaining only the terms linear in 

u*, v*, 7/~ and z/~ yields 

3 
* = 0  y = - I  (5.5) 

Rfl 3 v* + uzx 
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u * + ~ - - ~ v  = 0  y----0. (5.6) 

In Figure 6, we present values o f  the drag D versus R for e = 0.5. The results show that 
D is a decreasing function of  R for sufficiently large values of  R. 

Next we  use the irrotationality of  the flow in the upper layer to write 

u* = ¢*, v* = ey. (5.7) 

Since we  are interested in the rate of  decay of  the waves,  it is sufficient to assume 

¢* = eikX[Ae ky + Be-kY]. (5.8) 

Here A, B and k are constants. The constant k is in general complex.  Its real part, kr, is the 
wave number and its imaginary part, ki, is the rate of  decay. 

To evaluate k we  substitute (5.7) and (5.8) into (5.5) and (5.6). This leads to the following 
linear system for A and B 

- k + ~ - g  A -  k+ f f~  B = 0 .  (5.10) 

In order for (5.9)-(5.10) to have a nontrivial solution for A and B,  we  require that the 
determinant of  the coefficients vanishes. This leads to: 

e_k[ 3 ( l )  ik2] e k [-~-~-(k--ff~-)-ika-F F2j = O. -~-~g k+~-~ + i k 3 +  F2] + 3 1 ik 2] 
(5.1o) 

Fig. 6. Values of the drag D versus R for F = 0.72, 6 = 1, fl = 0.25 and e = 0.5. 



396 J.-M. Vanden-Broeck and T. Miloh 

0.01 

0.005 

0 

-0.005 

-0.01 

-0.015 

-0.02 

-0.025 

-0.03 

-0.035 

- 0 . 0 4  
- 2 0  

- 0 . 9 9 2  

-0.994 

- 0 . 9 9 6  

-0.998 

-1.002 

-1.004 

J 

I I I I 

-15 -10 -5 0 

i I i 

I I t 

5 10 15 20 

I I I I I I I 

F 

(a) 

(b) 

-1,006 f i t t i ., , i i 
-20 -15 -10 -5 0 5 10 15 20 

Fig. 7. Free surface profile (a) and profile of the surface of the mud (b) for F = 0.72, b = 0.5, 5 = 1,/3 = 0.25, 
R = 60 and e = O. 125. 

For  R = 0,  k is  real and (5 .10 )  reduces  to the c lass ica l  d i spers ion  relat ion o f  l inear water  
w a v e s  in water  o f  finite depth 

F 2  _ tanh k (5 .11 )  
k 
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For R = c~, k is also real and (5.10) reduces to 

1 
F--- ~ = k tanh k. (5.12) 

Equation (5.12) is the linear dispersion relation for linear waves in a two-fluid system when 
the pressure in the lower layer is hydrostatic. 

For 0 < R < ~ ,  k is complex and (5.10) has to be solved numerically. This can easily 
be done by Newton's method. Numerical values of kr and ki are shown in Figures 4 and 5 as 
functions of the Reynolds number R. Figure 5 shows that ki approaches zero for both very 
small and very large values of R. 

Next we look at the effect of increasing E on the solutions. Profiles of the free surface and of 
the surface of the mud are shown in Figures 2, 3, 7-9 for R = 60 and various values of c. For 
small values of e, the amplitude of the waves on the free surface and on the surface of the mud 
increases proportionally to e. This behavior can be expected since the flow can be linearized 
about the uniform stream for e small. As c increases nonlinear effects become predominant 
and the amplitude of the waves first increases with e and then decreases. In Figure 10, we 
show the values of D versus 4. The broken curve corresponds to the linear theory. It was 
obtained by running one Newton iteration with the uniform stream as the initial guess. Figure 
10 shows that the nonlinear results deviate from the linear theory for e > 0.25. 

Finally, we compare the rate of decay predicted by the linear theory (see Figures 4 and 5) 
with our numerical solution of Figure 7a. We first use the linear theory and find ki = 0.076 
for R = 60. Next we write r/t/(x) = Ge -kix and evaluate the constant G by fitting a point of 
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the numerical profile of Figure 7a for large x. The curve ~}(x) is shown in Figure 7a by the 
broken curve. The rate of decay is seen to be in good agreement with the numerical profile. 

6. Conclusions 

We have shown that a layer of mud can produce a damping of the train of waves generated by 
a disturbance moving at the surface of a layer of fluid. Our model is based on two assumptions 
for the layer of mud. First we neglected the rheological properties of the mud and described it as 
a Newtonian fluid. Secondly we approximated the Navier Stokes equations by the lubrication 
equations. These assumptions enabled us to solve the problem by a boundary integral equation 
method. 
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Appendix: Derivation of (3.8) 

To describe the layer of mud, it is convenient to introduce temporally coordinates with the 
origin on the bottom. Thus we define Y = y + hi + h2 and h(x) = ~li(x) + hl "q- h2. 

Integrating the third equation in (2.5) with respect to y gives 

P = - P l g Y  + f ( x ) .  (A1) 

Here f ( x )  is an arbitrary function of x. Substituting (A1) into the second equation (2.5), 
integrating two times with respect to y and using the boundary conditions (i) and (ii) yields 

y2  1 
vu = l f ' ( x )  f ' ( x ) h ( x ) Y  + vc. (A2) 

Pl 2 Pl 

Differentiating (A2) with respect to x, substituting in the first equation (2.5), integrating with 
respect to y and using (i) gives 

1 ]i3 1 y2 1 y2  
v - - - f " ( x ) T  + - - y " ( x ) h ( x )  + y ' ( x ) h ' ( x ) - -  (A3) 

ply ply  -2- ply  2 

Substituting (A3) into (iv), after some algebra and an integration with respect to x, gives 

l f ' (x )h3(x)  = plvch(x)  + C. (A4) 

Here C is a constant of integration. 
Using (vii), we find C = - P l  VChl and the equation (A4) becomes (3.8) when rewritten in 

dimensionless variables. 
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